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Abstract

We discuss some of the recent work in approximation theory motivated by the research of

Géza Freud (1922–1979).
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1. Introduction

Géza Freud (1922–1979) was one of the main leaders in approximation theory of
the past century. His interests included trigonometric and polynomial approxima-
tion, summability theory, harmonic analysis, differential equations, functional
analysis, in short, almost everything connected with approximation theory at that
time. Most of the articles in Volumes 46 and 48 of Journal of Approximation Theory
deal with his contributions to this field.
During the last 10 years or so of his life, he was ‘‘obsessed’’ (in his words) with the

theory of weighted polynomial approximation. This subject itself has diversified a lot
since his times, with the infusion of potential theory [58,59,79] and Hilbert transform
techniques (cf. [17] and references therein). Several books have been published
dealing with various aspects of weighted polynomial approximation. The book [50]
gives a general, more or less historical, introduction to the different ideas in the
development of this theory. It also contains a fairly large bibliography of 356 items.
The treatise [66] of Saff and Totik deals with the potential theory aspects, while the
treatise [33] of Levin and Lubinsky gives an extensive treatment of orthogonal

ARTICLE IN PRESS

E-mail address: hmhaska@calstatela.edu.
1Supported in part, by grant DMS-0204704 from the National Science Foundation and grant

DAAD19-01-1-0001 from the US Army Research Office.

0021-9045/03/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0021-9045(03)00088-1



polynomials. In addition, there are many surveys dealing with more specialized
topics, for example, [11,15,17,36,37,46,71].
In this paper, we will discuss some current research that appears to be motivated

by the problems and ideas which Freud worked on. We will only focus on the
classical approximation problems which Freud himself had contributed to, but not
attempt to write an exhaustive review. In particular, the impressive results by Benko
[2] on the closure of functions of the form wnPn; Pn being a polynomial of degree n;
and Totik [78] on the Christoffel functions with respect to variable weights will not
be discussed. In light of the different books and surveys published after the special
issues of this Journal in 1986, we will further focus on the research after 1996, when
[50] was published.
Some of the new features of the current research in weighted approximation

appear to be the presence of endpoint effects in the degree of approximation with
respect to weights with a fast decay near infinity, multivariate approximation,
orthogonal polynomials, interpolation, and another process which I will call quasi-
interpolation. In this paper, I will give examples of the kind of results proved recently
in these directions.

2. Weighted polynomial approximation

The Bernstein approximation problem seeks necessary and sufficient conditions on
a weight function w to ensure that the class of weighted polynomials
fwP: P a polynomialg is dense in the space C0ðRÞ of continuous functions on R;
vanishing at infinity. The solution by Riesz [65] is most complete in the case when

one considers L2ðRÞ rather than C0ðRÞ; and is given in terms of the ‘‘Christoffel
function’’, defined for integer nX1 and zAC by

lnðw; zÞ :¼ minjPðzÞj�2
Z

jPðtÞj2wðtÞ dt; ð2:1Þ

where the minimum is taken over all polynomials of degree on: The Christoffel
function can be evaluated explicitly using orthonormal polynomials with respect to w

(cf. [24, Theorem I.4.1]). Under some very general conditions on the weight function,
the weight function can be determined from the sequence of Christoffel functions (cf.
[24,33,63,78]). For many other applications of the Christoffel function, we refer to
[64]. Freud initiated an ambitious program of estimating the degree of approxima-
tion by weighted polynomials where the polynomials are of a given degree. His hope
was to be able to formulate the conditions as far as possible in terms of the
Christoffel functions, without which no estimate on the degree of approximation can
be obtained. A compromise was to formulate the conditions more directly in terms
of the weight function itself. The class of weight functions was expanded gradually,
starting with the Hermite weight. Freud’s papers clearly show a lot of effort in
coming up with the ‘‘right’’ class of weight functions. A large class of weight
functions arising out of this effort is now called the class of Freud weights
(Definition 2.1).
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In the sequel, we adopt the following convention regarding constants. The
symbols c; c1;y will denote positive constants depending only on the fixed
quantities in question, such as the weight function, the norms, and smoothness
parameters. Their value may be different at different occurrences, even within the
same formula. The notation ABB will mean c1ApBpc2A:

Definition 2.1. Let w :R-ð0;NÞ: We say that w is a Freud weight if QðxÞ :¼
logð1=wðxÞÞ is an even, convex function on R; Q is twice continuously differentiable
on ð0;NÞ and there are positive constants c; c1 such that

1pcp
ðxQ0ðxÞÞ0

Q0ðxÞ pc1 ð2:2Þ

for all x40:

The prototypical examples of a Freud weight are expð�jxjaÞ; a41: Sometimes,
one requires the differentiability conditions and (2.2) only for xXc2: However,
it is proved in [50, Proposition 3.1.3] that if w is such a weight, there exists
a Freud weight %w such that wðxÞB %wðxÞ for all xAR: An interesting feature
of the theory of the degree of weighted polynomial approximation with Freud
weights is that the end results in this theory parallel closely the corresponding
theory of trigonometric polynomial approximation. In particular, unlike the
theory of polynomial approximation on ½�1; 1
; there is no ‘‘end-point effect’’ in
this theory.
The class of weights is now far more generalized, mostly in the direction of

examining the case when jxja is replaced by another function that tends to infinity
faster than a power of x as x-N: A good survey of this area can be found in the
dissertation of Mashele [46]. To give the reader a glimpse of the recent results, we
describe a direct theorem, due to Damelin and Lubinsky [16], for ‘‘Erd +os weights’’. It
turns out that unlike Freud weights, approximation by Erd +os weights show an ‘‘end
point effect’’, even though there is no reason, obvious from the definitions, as to why
this should be the case.

Definition 2.2. A function W :¼ e�Q is called an Erd +os weight if each of the following
conditions is satisfied.

(a) Q :R-R is an even and differentiable function, and Q0ðxÞ40 if xAð0;NÞ:
(b) The function xQ0ðxÞ is strictly increasing in ð0;NÞ; and limx-0þ xQ0ðxÞ ¼ 0:
(c) Let TðxÞ :¼ TQðxÞ :¼ xQ0ðxÞ=QðxÞ: There exist constants c; c140 such that for

every coxoy; TðxÞpc1TðyÞ: Also, TðxÞ-N as x-N:
(d) There exist constants c2; c340 such that for cpxpy;

yQ0ðyÞ
xQ0ðxÞpc3

QðyÞ
QðxÞ

� �c2

:
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Prototypical Erd +os weights are WðxÞ ¼ expð�expkðjxj
aÞÞ; where expk denotes the

k times iterated exponential function, kX1; and a40: Another example is WðxÞ ¼
expð�expððlogð1þ x2ÞÞbÞ; b41: Erd +os weights decay faster near infinity than the
Freud weights. Moreover, it is interesting to note that they need not be twice
differentiable on ð0;NÞ:
For any weight W ¼ expð�QÞ such that xQ0ðxÞmN as xmN; the numbers au are

defined to be the least positive solution of the equation

u ¼ 2

p

Z 1

0

autQ0ðautÞ dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p ; u40; ð2:3Þ

and the inverse of the function u/au=u is defined by sðtÞ :¼ inffu: auputg: To
make the end point effect more precise, we now define a modulus of smoothness.
For p40; and a measurable function f on a measurable subset A of R; we write

jj f jjp;A :¼
R

A
j f ðtÞjpdt

� �1=p
if 0opoN;

ess sup
tAA

j f ðtÞj if p ¼ N:

8<
:

For h40; f :R-R; and integer r; we define the rth forward difference of f by

Dr
hð f ; xÞ :¼

Xr

c¼0

r

j

 !
ð�1Þ j

f ðx � ch þ rh=2Þ:

The class of polynomials of degree at most n will be denoted by Pn: The end point
effect is encoded in the modulus of smoothness by letting the step size h depend upon
x; analogous to the case of the Ditzian–Totik modulus of smoothness for
approximation on ½�1; 1
: Accordingly, we write

FtðxÞ :¼ 1� jxj
sðtÞ

� �1=2
þTðsðtÞÞ�1=2; ð2:4Þ

and define the modulus of smoothness of order r of a function fALpðRÞ by
or;pð f ;W ; tÞ :¼ sup

0ohot

jjWDr
hFtðxÞð f ; xÞjjp;jxjpsð2tÞ

þ inf
PAPr�1

jjð f � PÞW jjp;jxjXsð4tÞ: ð2:5Þ

The direct theorem can be stated as follows.

Theorem 2.1. Let W be an Erd +os weight, rX1; 0opoN; f :R-R; fWALpðRÞ:
Then for every integer nXr � 1; there exists a polynomial PAPn such that

jjð f � PÞW jjp;Rpc1or;p f ;W ; c
an

n

� �
: ð2:6Þ

The same estimate holds also for p ¼ N if we assume that fWAC0ðRÞ:

The proof of this theorem is quite technical. As with the case of the Freud weights,

it involves the approximation of W�1; which is done by interpolation of the
corresponding Lubinsky entire function (cf. [50, Section 8.2]). The proof then relies
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upon a classical technique as in [20], where results on the approximation of the
characteristic function of an interval are combined with those on the approximation
of f by piecewise constants.
The ‘‘converse theorem’’ corresponding to Theorem 2.1 was proved by Damelin

[8] under some additional conditions on the weight functions. Damelin has kindly
informed me that he and his collaborators have made further generalizations and
applications of this theory [5,12]. Mastroianni and Szbados [47,48] have extended
other such ideas as one-sided approximation, used by Freud in his work on the
degree of approximation.

3. Orthogonal polynomials

Freud’s theory of weighted polynomial approximation was inseparable from his
theory of orthogonal polynomials with respect to the weights involved. A very
detailed survey about Freud’s orthogonal polynomials and their generalizations can
be found in [33,37]. A hierarchy of weight functions on both finite and infinite
intervals is studied in a unified manner in [33]. A survey from the point of view of a
proof technique based on the Riemann–Hilbert problem can be found in [17]. In the
beginning, a driving factor in this research was the Freud conjecture regarding the
asymptotic behavior of the recurrence coefficients of polynomials orthonormal with

respect to expð�jxjbÞ for b40: This conjecture itself was settled in [44]. Further
research [45,50,77] focused on the study of the asymptotic behavior of the leading
coefficients of the orthonormalized polynomials. The following Theorem 3.1 by
Kriecherbauer and McLaughlin [29] gives a relatively recent result in this direction.
The connection between the behavior of the leading coefficients and the zeros of
orthogonal polynomials is described by Stahl and Totik [67], and Andrievskii and
Blatt [1]. Further, it is obvious that a detailed information regarding orthogonal
polynomials is vital for the investigation of such processes of approximation as
orthogonal expansions and interpolation.

Theorem 3.1. Let b40 and fpnðxÞ :¼ gnxn þ?APng be the system of polynomials

orthonormal on R with respect to expð�kbjxjbÞ; where kb :¼ Gðb=2Þ
ffiffi
p

p

Gððbþ1Þ=2Þ: Let

Cb :¼ 2

p
ð�1Þnþ1Gðbþ 1Þ b� 1

2b

� �bþ1 XN
j¼0

ð2j þ 1� bÞ�1
Yj

c¼1

2c� 1

2c

 !
cosðpb=2Þ:

(a) We have

gn

ffiffiffi
p

p
nð2nþ1Þ=ð2bÞe�n=b2�n ¼ 1þ b� 4

24b

� �
1

n
þ errb;n; ð3:1Þ
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where

errb;n ¼

Oðn�2Þ if 0obp1=2;

Oðn�1=bÞ if 1=2obo1;

ð�1Þnþ1

4nðlog nÞ2
ð1þ oð1ÞÞ if b ¼ 1;

Cbn�b þ Oðn1�2bÞ if 1obp3=2;

Cbn�b þ Oðn�2Þ if 3=2obp2;

Oðn�2Þ if bX2:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3:2Þ

(b) For bX1; the zeros x1;n4x2;n4?4xn;n of pn satisfy for each k ¼ 1;y; n;
xk;n

n1=b
¼ 1� ð2b2Þ�1=3 ik

n2=3
þ Oðn�1Þ; ð3:3Þ

where �ik is the kth zero of the Airy function Ai:

Analogous results for more general weights are obtained by Damelin in [10].

4. Interpolation

The theory of Lagrange interpolation at the zeros of Hermite polynomials was
studied by Freud [23] and Nevai [62,64]. The theory remained largely dormant for
many years, except for an occasional paper [28,61]. Apparently, the theory has
received a lot of recent attention by Damelin, Lubinsky, Mastroianni, Szabados,
Vértesi, among others. For a relatively recent survey of this area, we refer to the
paper [71] of Szabados.
An important characteristic of interpolation is the Lebesgue function and its

norm, the Lebesgue constant. For n ¼ 1; 2;y; let Yn :¼ fyj;n: j ¼ 1;y; ng be a set of
distinct real numbers. Then for every integer nX1; there exist polynomials cj;nðYnÞ of
degree at most n � 1 such that cj;nðYn; yk;nÞ ¼ 0 if kaj and cj;nðYn; yj;nÞ ¼ 1: The

Lebesgue function of this system with a weight W is defined by

LðYn;W ; xÞ :¼ WðxÞ
Xn

j¼1
W�1ðyj;nÞjcj;nðYn;xÞj; ð4:1Þ

and the corresponding Lebesgue constant is defined by LðYn;WÞ :¼
jjLðYn;W ; Þjj

N;R: It is easy to see that for any f with WfAC0ðRÞ;

WðxÞ f ðxÞ �
Xn

j¼1
f ðyj;nÞcj;nðxÞ

 !�����
�����pð1þ LðYn;W ; xÞÞ min

PAPn

jjð f � PÞW jj
N;R:

Thus, the Lebesgue function determines for what functions and at what points the
Lagrange interpolation polynomials converge.
Let fpnðxÞ ¼ gnxn þ?þAPng be the system of polynomials orthonormal on R

with respect to the weight function W 2; Xn be the set of zeros, x1;n4?4xn;n; of pn;
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n ¼ 1; 2;y : In the case when W is a Freud weight, Matijla [49] proved that

Lðwn;WÞ ¼ Oðn1=6Þ: Szabados [70] proved this order of magnitude to be exact; i.e.,
Lðwn;WÞBn1=6: One of the most remarkable result of [70] is that the Lebesgue
constant for the system of zeros of orthogonal polynomials together with certain
‘‘end points’’ is of the order log n:

Theorem 4.1. Let W be a Freud weight, x0 be a positive number such that

jpnðx0ÞjWðx0Þ ¼ jjpnW jj
N;R;

and Vnþ2 :¼ wn,fx0;�x0g: Then

LðVnþ2;WÞBlog n: ð4:2Þ

In the case when W is the Hermite weight, WðxÞ ¼ expð�x2=2Þ; Szabados [70]
proved further that the norm of any Pn valued projection operator with respect to
the weighted supremum norm is at least c log n: Vértesi [81] has proved a pointwise
lower bound on the Lebesgue function in the general case, analogous to the
corresponding results for the compact interval (cf. [73, Theorem 3.2, p. 72]).

Theorem 4.2. Let W be a Freud weight, the numbers au be defined as in (2.3) and e40:
Then for any set of interpolation points, Yn; there exist sets Hn :¼ HnðW ; e;YnÞ with

jHnjpean such that

LðYn;W ; xÞ4 e
3840

log n; xA½�an; an
\Hn; nXc: ð4:3Þ

In the case of Erd +os weights with some additional conditions, the analogues of
Theorems 4.1 and 4.2 were proved by Damelin [7] and Vértesi [80], respectively.
Horváth and Szabados [26] have proved an analogue of Theorem 4.1 for another
class of general weights. The order of magnitude of the Lebesgue function for the
zeros of orthogonal polynomials has been evaluated in a great generality by Kubayi
[30,31]. The question of mean convergence of Lagrange interpolation processes is
recently studied by Kubayi and Lubinsky [32], Damelin et al. [15], Lubinsky [39], and
Lubinsky and Mastroianni [42,43] among others. The analogues of classical results
regarding other kinds of interpolation, for example, Hermite or Hermite Fejér
interpolation, are also being studied for weights on the real line, for example, we are
aware of [13,14,27,70]. Some applications to the convergence of quadrature formulas
and other related topics are discussed in [35,38].

5. Quasi-interpolation

In [22], Freud studied a sequence of linear operators Ln on C½�1; 1
 corresponding
to interpolation nodes Yn with the following properties: (a) For PAPcn; LnðPÞ ¼ P;
(b) for each fAC½�1; 1
; Lnð f ÞAPc1n; (c) Lnð f ; yj;nÞ ¼ f ðyj;nÞ for j ¼ 1;y; n; and (d)

ARTICLE IN PRESS
H.N. Mhaskar / Journal of Approximation Theory 126 (2004) 1–15 7



jjLnð f Þjj
N;½�1;1
pc2jj f jj

N;½�1;1
: This theme was carried out by many mathematicians

([73, Chapter II]). For example, the following theorem of Erd +os et al. [19] gives
necessary and sufficient conditions for the existence of a convergent sequence of
interpolatory polynomials.

Theorem 5.1. Let xk;n ¼ cos yk;n be distinct points on ½�1; 1
; xk;n4xkþ1;n; k ¼
1;y; n � 1; n ¼ 1; 2;y : The following are equivalent.
(a) To every fAC½�1; 1
 and e40; there exists a sequence of polynomials rnAPnð1þeÞ

such that rnðxk;nÞ ¼ f ðxk;nÞ for k ¼ 1;y; n; and jj f � rnjjN;½�1;1
-0 as n-N:

(b) We have

lim sup
n-N

#fk: yk;nAIng
njInj

p
1

p
ð5:1Þ

for every sequence of intervals InD½0; p
 for which limn-N njInj-N; and

lim inf
n-N

nðyk;nþ1 � yk;nÞ40; 1pkpn: ð5:2Þ

In the implication (b))(a), a lot more can be said than convergence. The
following Theorem 5.2 is a consequence of Theorem 5.1 and a result of Szabados [69]
(cf. [73, Theorem 2.7, p. 52]).

Theorem 5.2. Let xk;n ¼ cos yk;nA½�1; 1
 be an arbitrary system of nodes

(0py1;no?oyn;npp) and let

dn :¼ min
1pkpn�1

ykþ1;n � yk;n:

Then for any e40; there exist linear polynomial operators Pn on C½�1; 1
 with the

following properties: (a) If m ¼ Ipð1þ eÞ=dnm then PnðPÞ ¼ P for all PAPm; (b) for

fAC½�1; 1
; Pnð f ÞAPN where N ¼ ðp=dn þ 1Þð1þ 3eÞ; (c) Pð f ; xk;nÞ ¼ f ðxk;nÞ for

k ¼ 1;y; n; and (d) jjPnð f Þjj
N;½�1;1
pcjj f jj

N;½�1;1
:

In the case when xk;n’s are the zeros of Chebyshev polynomials, an explicit

construction for an analogous operator was given by Szabados [68]. Further results
in the context of weighted polynomial approximation can be found in [74–76,82].
We will discuss two more recent deviations on this theme.
In [55], we proved that an analogue of Theorem 5.2 holds in practically any setting

where the Jackson theorem holds, provided we drop the requirement of linearity. Let

dX1 be an integer, KCRd be compact, rX1 be an integer, and let D be a linear
(partial) differential operator of order r defined for a subset of CðKÞ; and having
coefficient functions in CðKÞ:We say that a sequence fVng of subspaces of CðKÞ has
the Jackson property with respect to D if for every f in the domain of D; and nX1;
one has

inf
vAVn

jj f � vjjCðKÞpAn�rfjj f jjCðKÞ þ jjDð f ÞjjCðKÞg;
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where A is a positive constant, independent of n and f : Our theorem can now be
stated as follows.

Theorem 5.3. Suppose that m1;y; mN are compactly supported Borel measures on

KDRd ; and that Sj :¼ suppðmjÞ; j ¼ 1;y;N; are mutually disjoint. Assume that

b
n
pZ :¼ min

1pi;jpN
distðSi;SjÞpB; ð5:3Þ

for some positive integer n and positive constants b and B (which may depend on K and

d; but not on N; mj’s or Sj’s). Let rX1 be an integer, and let D be a linear (partial)

differential operator of order r defined for a subset of CðKÞ; and having coefficient

functions in CðKÞ: Further, let fVkg be a sequence of finite-dimensional subspaces of

CðKÞ having the Jackson property with respect to D: If a40; there exists a positive

constant C :¼ Cða; b; d;B;DÞ with the following property: For every fACðKÞ; there

exists Pnð f ÞAVCn such thatZ
fdmj ¼

Z
Pnð f Þ dmj; j ¼ 1;y;N; ð5:4Þ

and

jj f � Pnð f ÞjjCðKÞpð2þ aÞ inf
vAVCn

jj f � vjjCðKÞ: ð5:5Þ

In the second variation of the theme of Freud, we require linearity, but drop the
requirement of interpolation. Although the operators need to be constructed using
the data, we may want the approximation operator in some applications not

interpolating the data; for example, when the data is noisy. Such operators, known
as quasi-interpolatory operators, have been studied in the context of spline
approximation by many mathematicians [3,4,6,21]. In the context of polynomial
approximation, an obvious way to construct a quasi-interpolatory operator is to
discretize a continuous, kernel-based operator. Let W be a Freud weight, fpng be the
system of orthonormal polynomials on R with respect to W 2; and for integer nX1;
let

Vnðx; tÞ :¼
Xn�1
k¼0

pkðxÞpkðtÞ þ
X2n�1

k¼n

2� jkj
n

� �
pkðxÞpkðtÞ: ð5:6Þ

The shifted average operator vn is defined by

vnð f ; xÞ :¼
Z
R

Vnðx; tÞf ðtÞW 2ðtÞ dt: ð5:7Þ

Freud proved that the operators vn are uniformly bounded in all weighted Lp norms,
and used this fact extensively in his study of weighted polynomial approximation (cf.
[50]). In [57], we proved that the operators tn;m obtained by discretizing the integral

in (5.7) using the Gauss–Jacobi quadrature formula based on zeros of pm; ð2þ
dÞnpmpLn for some d;L40; are uniformly bounded in the sense that for every f

ARTICLE IN PRESS
H.N. Mhaskar / Journal of Approximation Theory 126 (2004) 1–15 9



with WfAC0ðRÞ;

jjWtn;mð f Þjj
N;RpcjjWf jj

N;R: ð5:8Þ

This work is further generalized to the context of different weights in [40,41,46]. It
was observed in [56] that a Marcinkiewicz–Zygmund inequality, together with the
uniform boundedness of kernel operators similar to those in (5.7) lead to the uniform
boundedness of the discretized operators. In [52], we proved the necessary
Marcinkiewicz–Zygmund inequality in the case of an arbitrary, sufficiently dense

point set on the real line in the case when the weight function is expð�jxjaÞ; a41:
Therefore, for these weights, it is possible to discretize the operators in (5.7) using
quadrature formulas based on an arbitrary system of points on R: A generalization
to other weights is in progress [54].

6. Multivariate approximation

The very first results on multivariate polynomial approximation were probably
obtained by Dzrbasyan and Tavadyan [18]. They required a stringent requirement

on the target function g; namely, W�1gAC0ðRÞ: A search of Web of Science showed
only one other paper on multivariate weighted approximation [34] on a simplex.
Multivariate weighted polynomial approximation appears to be a very fruitful area
for future research. In [50], we have illustrated one application to the theory of
Gaussian networks.
In [51], we have given a more complete analogue of the results of Dzrbasyan and

Tavadyan without the restrictive condition, valid for all Freud weights. We observe
that in the statement of the Bernstein approximation problem, one approximates a
function gAC0ðRÞ by weighted polynomials. Freud found it convenient to write
g ¼ wf ; and interpret the approximation as polynomial approximation of f in a
weighted norm. While such moduli of smoothness as defined by (2.5) utilize the
differences of the function f ; Freud’s original attempts [25] utilized the differences of
g: This turned out to be more useful for an amusing result in [51]. Let sX1 be an
integer, gALpðRsÞ for some p; 1ppoN or be a continuous function on Rs;

vanishing at infinity. Let mX2 be an even integer, a ¼ ða1;y; asÞAð0;NÞs and

Ep;n;sðm; a; gÞ :¼ min g � exp �
Xs

k¼1
akxm

k

 !
P

�����
�����

�����
�����
p;Rs

;

where the minimum is taken over all polynomials P of s variables having

coordinatewise degree at most n: We have proved that if Ep;n;sðm; a; gÞ ¼ Oðn�bÞ
for some b40 and aAð0;NÞs; then the same estimate holds also for all aAð0;NÞs:
This result was used heavily [53] in the proof of a converse theorem for
approximation by Gaussian networks.
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7. Questions and conjectures

1. An interesting and surprising aspect of weighted polynomial approximation

with respect to the weights expð�jxjaÞ; a41 is that there are exact expressions for the
order and type of entire functions in terms of the degree of approximation to their
restrictions to R in the weighted norm (cf. [50, Chapter 7]). Nevertheless,
approximation of analytic and entire functions remains relatively unexplored with
general weight functions. In particular, it will be interesting to characterize the
functions f for which

lim sup
n-N

En;pðW ; f Þ1=no1; ð7:1Þ

where, for a weight function W and 1pppN;

En;pðW ; f Þ :¼ min
PAPn

jjð f � PÞW jjp;R:

One reason for this interest is that the zeros of polynomials of best approximation to
functions not satisfying (7.1) exhibit a remarkable asymptotic behavior (cf. [1,60]).

2. It is well known [59,66] that under suitable conditions on WðxÞ ¼ expð�QðxÞÞ;
there exists, for every integer nX1; a unique probability measure mW ;n; supported on

½�1; 1
 that maximizesZ Z
logjWðanxÞWðantÞðx � tÞj dnðxÞ dnðtÞ

among all compactly supported probability measures n supported on R; where an is
defined by (2.3). It will be interesting to prove the following analogue of Theorem
5.1.

Let xk;n be distinct points on R; W be a weight function such that the measures mW ;n

are supported on ½�1; 1
: The following are equivalent.
(a) To every f with WfAC0ðRÞ and e40; there exists a sequence of polynomials

rnAPnð1þeÞ such that rnðxk;nÞ ¼ f ðxk;nÞ for k ¼ 1;y; n; and jjð f � rnÞW jj
N;R-0 as

n-N:
(b) We have

lim sup
n-N

#fk: xk;n=anAIng
nmW ;nðInÞ

p1 ð7:2Þ

for every sequence of intervals InD½�1; 1
 for which limn-N nmW ;nðInÞ-N; and

lim inf
n-N

nmW ;nð½xkþ1;n=an; xk;n=an
Þ40; 1pkpn: ð7:3Þ

It is worth mentioning here that the location and distribution of node systems
fxk;ng that provide a ‘‘good’’ interpolation process has been studied by Szabados [72]
and Damelin [9].

3. It will be interesting to study multivariate weighted approximation with non-
tensor product weights, for example, radial weights.
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(Szeged) 1 (1922–23) 209–225.

[66] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, New York, Berlin,

1997.

[67] H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics, Vol. 43,

Cambridge University Press, New York, 1992.

[68] J. Szabados, On an interpolatory analogon of the de la Vallée Poussin means, Stud. Sci. Math.

Hungar. 9 (1974) 187–190.

[69] J. Szabados, On some convergent interpolatory polynomials, in: Fourier Analysis and Approxima-

tion Theory, Colloquium of Mathematical Society, János Bolyai, Vol. 19, North-Holland Publishing

Co., Amsterdam, 1976, pp. 805–815.

[70] J. Szabados, Weighted Lagrange interpolation and Hermite–Fejer interpolation on the real line,

J. Ineq. Appl. 1 (1997) 99–123.

ARTICLE IN PRESS
H.N. Mhaskar / Journal of Approximation Theory 126 (2004) 1–1514



[71] J. Szabados, On some problems of weighted polynomial approximation and interpolation, in: New

Developments in Approximation Theory (Dortmund, 1998), International Series of Numerical

Mathematics, Vol. 132, Birkhuser, Basel, 1999, pp. 315–328.

[72] J. Szabados, Where are the nodes of ‘‘good’’ interpolation polynomials on the real line?, J. Approx.

Theory 103 (2) (2000) 357–359.
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